Peran Proses Bisnis dalam Transformasi Digital UKM: Systematic Literature Review mengenai Teknologi yang Diadopsi

Penulis

  • Riko Jamil Bagastio Universitas Telkom, Indonesia
  • Riko Harizillah Universitas Telkom, Indonesia
  • Riko Arya Pramudya Subekti Universitas Telkom, Indonesia
  • Rd. Rohmat Saedudin Telkom University, Indonesia

DOI:

https://doi.org/10.5281/siteknik.v1i1.10

Kata Kunci:

Proses Bisnis, Transformasi Digital, UKM

Abstrak

Penelitian ini mengeksplorasi peran proses bisnis dalam transformasi digital dan fokus pada teknologi yang diadopsi dalam konteks ini. Hal ini menekankan pentingnya proses bisnis dalam memperbarui strategi operasional, meningkatkan efisiensi, dan mendorong inovasi. Studi ini menggunakan pendekatan PRISMA untuk mengumpulkan dan mengevaluasi literatur yang relevan tentang deteksi dan mitigasi ulasan palsu. Temuan menyoroti distribusi geografis dari karya-karya yang ditinjau, dengan India mendominasi literatur tentang peran proses bisnis dalam transformasi digital. Analisis juga mengungkapkan teknologi yang paling banyak dibahas dalam literatur, termasuk IoT dan Big Data. Penelitian ini menyimpulkan dengan menekankan perlunya eksplorasi lebih lanjut dan aplikasi praktis dari temuan penelitian ini dalam skenario dunia nyata.

Biografi Penulis

Riko Jamil Bagastio, Universitas Telkom, Indonesia

Mahasiswa S2 Sistem Informasi, Telkom University

Riko Harizillah, Universitas Telkom, Indonesia

Mahasiswa S2 Sistem Informasi, Telkom University

Riko Arya Pramudya Subekti, Universitas Telkom, Indonesia

Mahasiswa S2 Sistem Informasi, Telkom University

Rd. Rohmat Saedudin, Telkom University, Indonesia

Dosen S2 Sistem Informasi, Telkom University

Referensi

Alghazzawi, D. M., Alquraishee, A. G. A., Badri, S. K., & Hasan, S. H. (2023). ERF-XGB: Ensemble Random Forest-Based XG Boost for Accurate Prediction and Classification of E-Commerce Product Review. Sustainability (Switzerland), 15(9). https://doi.org/10.3390/su15097076

Alsubari, S. N., Deshmukh, S. N., Alqarni, A. A., Alsharif, N., Aldhyani, T. H. H., Alsaade, F. W., & Khalaf, O. I. (2022). Data analytics for the identification of fake reviews using supervised learning. Computers, Materials and Continua, 70(2), 3189–3204. https://doi.org/10.32604/cmc.2022.019625

Alzahrani, M. E., Aldhyani, T. H. H., Alsubari, S. N., Althobaiti, M. M., & Fahad, A. (2022). Developing an Intelligent System with Deep Learning Algorithms for Sentiment Analysis of E-Commerce Product Reviews. In Computational Intelligence and Neuroscience (Vol. 2022). Hindawi Limited. https://doi.org/10.1155/2022/3840071

Asaad, W. H., Allami, R., & Ali, Y. H. (2023). Fake Review Detection Using Machine Learning. Revue d’Intelligence Artificielle, 37(5). https://doi.org/10.18280/ria.370507

dos Santos, A. S., Camargo, L. F. R., & Lacerda, D. P. (2020). Evaluation of classification techniques for identifying fake reviews about products and services on the internet. In Gestao e Producao (Vol. 27, Issue 4). Brazilian Institute for Information in Science and Technology. https://doi.org/10.1590/0104-530X4672-20

Gopi, A. P., Jyothi, R. N. S., Narayana, V. L., & Sandeep, K. S. (2023). Classification of tweets data based on polarity using improved RBF kernel of SVM. International Journal of Information Technology (Singapore), 15(2), 965–980. https://doi.org/10.1007/s41870-019-00409-4

Hadi, Z., Utami, E., & Ariatmanto, D. (2023). Detect Fake Reviews Using Random Forest and Support Vector Machine. SinkrOn, 8(2), 623–630. https://doi.org/10.33395/sinkron.v8i2.12090

Harli, I. I., Mutasowifin, A., Andrianto, M. S., & Syaefudin Andrianto, M. (2021). Pengaruh Online Consumer Review dan Rating terhadap Minat Beli Produk Kesehatan pada E-Marketplace Shopee Selama Masa Pandemi COVID-19. INOBIS: Jurnal Inovasi Bisnis Dan Manajemen Indonesia, 04(04).

Hossain, M. R., Akhter, F., & Sultana, M. M. (2022). SMEs in Covid-19 Crisis and Combating Strategies: A Systematic Literature Review (SLR) and A Case from Emerging Economy. Operations Research Perspectives, 9. https://doi.org/10.1016/j.orp.2022.100222

Lawn, S., Oster, C., Riley, B., Smith, D., Baigent, M., & Rahamathulla, M. (2020). A literature review and gap analysis of emerging technologies and new trends in gambling. In International Journal of Environmental Research and Public Health (Vol. 17, Issue 3). MDPI AG. https://doi.org/10.3390/ijerph17030744

Le, H., & Kim, B. (2020). DETECTION OF FAKE REVIEWS ON SOCIAL MEDIA USING MACHINE LEARNING ALGORITHMS. Issues in Information Systems, 21(1), 185–194. https://doi.org/10.48009/1_iis_2020_185-194

Memon, J., Sami, M., Khan, R. A., & Uddin, M. (2020). Handwritten Optical Character Recognition (OCR): A Comprehensive Systematic Literature Review (SLR). In IEEE Access (Vol. 8, pp. 142642–142668). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2020.3012542

Mulyana, S. (2021). Pengaruh Harga dan Ulasan Produk Terhadap Keputusan Pembelian Produk Fashion Secara Online Pada Shopee di Pekanbaru. Jurnal Daya Saing, 7(2).

Munna, M. H., Rifat, M. R. I., & Badrudduza, A. S. M. (2020, December 19). Sentiment Analysis and Product Review Classification in E-commerce Platform. ICCIT 2020 - 23rd International Conference on Computer and Information Technology, Proceedings. https://doi.org/10.1109/ICCIT51783.2020.9392710

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. In The BMJ (Vol. 372). BMJ Publishing Group. https://doi.org/10.1136/bmj.n71

Priambodo, B., Rahayu, S., Hazidar, A. H., Naf’An, E., Masril, M., Handriani, I., Pratama Putra, Z., Kudr Nseaf, A., Setiawan, D., & Jumaryadi, Y. (2019). Predicting GDP of Indonesia Using K-Nearest Neighbour Regression. Journal of Physics: Conference Series, 1339(1). https://doi.org/10.1088/1742-6596/1339/1/012040

Purnama, N. I., & Putri, L. P. (2021). Analisis Penggunaan E-Commerce Di Masa Pandemi. Seminar Nasional Teknologi Edukasi Dan Humaniora, 1.

Putra, E., Tinggi, S., & Pasaman, I. E. (2020). PENGARUH PROMOSI MELALUI SOSIAL MEDIA DAN REVIEW PRODUK PADA MARKETPLACE SHOPEE TERHADAP KEPUTUSAN PEMBELIAN ( STUDI PADA MAHASISWA STIE PASAMAN ) THE INFLUENCE OF PROMOTION THROUGH SOCIAL MEDIA AND PRODUCT REVIEW ON THE MARKETPLACE SHOPEE ON PURCHASE DECISIONS (STUDIES ON STIE PASAMAN STUDENTS). Jurnal Apresiasi Ekonomi, 8(3), 467–474.

Radiansyah, E. (2022). PENGARUH ULASAN PALSU PADA KONSUMEN: TINJAUAN LITERATUR DAN ARAH PENELITIAN MASA DEPAN. KALIANDA HALOK GAGAS, 5(1), 42–49. https://doi.org/10.52655/khg.v5i1.47

Ramaswamy, S., & DeClerck, N. (2018). Customer perception analysis using deep learning and NLP. Procedia Computer Science, 140, 170–178. https://doi.org/10.1016/j.procs.2018.10.326

Raza, A., Bilal, M., & Fahad Rauf, M. (2021). COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR FAKE REVIEW DETECTION. International Journal of Computational Intelligence in Control Copyrights @Muk Publications, 13(1). https://www.kaggle.com/general/243411

Rohman, A. N., Luviana Musyarofah, R., Utami, E., & Raharjo, S. (2020, October 27). Natural Language Processing on Marketplace Product Review Sentiment Analysis. 2020 2nd International Conference on Cybernetics and Intelligent System, ICORIS 2020. https://doi.org/10.1109/ICORIS50180.2020.9320827

Saputra, R., Istanto, H., Bachtiar, F. A., Ridok, A., & Korespondensi, P. (2022). PENGARUH WORD AFFECT INTENSITIES TERHADAP DETEKSI ULASAN PALSU. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 9(2), 427–434. https://doi.org/10.25126/jtiik.202295652

Sari, P. P. (2017). FAKTOR YANG MEMPENGARUHI TINGKAT KEPERCAYAAN MASYARAKAT TERHADAP E-COMMERCE FACTORS AFFECTING OF TRUST COMMUNITY LEVEL ON E-COMMERCE. JURNAL KOMUNIKASI, MEDIA DAN INFORMATIKA, 06(03).

Shafin, M. A., Hasan, M. M., Alam, M. R., Mithu, M. A., Nur, A. U., & Faruk, M. O. (2020, December 19). Product Review Sentiment Analysis by Using NLP and Machine Learning in Bangla Language. ICCIT 2020 - 23rd International Conference on Computer and Information Technology, Proceedings. https://doi.org/10.1109/ICCIT51783.2020.9392733

Shoja, B. M., & Tabrizi, N. (2019). Customer Reviews Analysis with Deep Neural Networks for E-Commerce Recommender Systems. IEEE Access, 7, 119121–119130. https://doi.org/10.1109/ACCESS.2019.2937518

Srividhya, V., & Megala, P. (2019). Scraping and Visualization of Product Data from E-commerce Websites. International Journal of Computer Sciences and Engineering, 7(5), 1403–1407. https://doi.org/10.26438/ijcse/v7i5.14031407

Triandini, E., Jayanatha, S., Indrawan, A., Putra, G. W., Iswara, B., Studi, P., Informasi, S., Bali, S., Raya, J., & No, P. (n.d.). Metode Systematic Literature Review untuk Identifikasi Platform dan Metode Pengembangan Sistem Informasi di Indonesia. In Indonesian Journal of Information Systems (IJIS (Vol. 1, Issue 2). https://www.google.com

Yarnold, J., Banihashemi, S., Lemckert, C., & Golizadeh, H. (2021). Building and construction quality: systematic literature review, thematic and gap analysis. In International Journal of Building Pathology and Adaptation. Emerald Group Holdings Ltd. https://doi.org/10.1108/IJBPA-05-2021-0072

Zhao, H., Liu, Z., Yao, X., & Yang, Q. (2021). A machine learning-based sentiment analysis of online product reviews with a novel term weighting and feature selection approach. Information Processing and Management, 58(5). https://doi.org/10.1016/j.ipm.2021.102656

Unduhan

Diterbitkan

2024-01-18

Cara Mengutip

Jamil Bagastio, R. ., Harizillah, R. ., Arya Pramudya Subekti, R. ., & Saedudin, R. R. . (2024). Peran Proses Bisnis dalam Transformasi Digital UKM: Systematic Literature Review mengenai Teknologi yang Diadopsi. SITEKNIK : Sistem Informasi, Teknik Dan Ilmu Terapan, 1(1), 32–40. https://doi.org/10.5281/siteknik.v1i1.10